DATA FROM LIFE HISTORY

Robert Humphreys
PIFSC, FRMD, Life History Program
May 19, 2014

MAJOR SPECIES GROUPS

Coral Reef Fishes: Acanthuridae, Scaridae, Lethrinidae, Mullidae, Holocentridae, Siganidae, Lutjanus

Deep-slope Bottomfish: Eteline snappers, Epinepheline

groupers, Carangidae

Pelagics: Xiphiidae, Istiophoridae, Bramidae, Coryphaenidae, Acanthocybium, Lampris

AGE DETERMINATION

- Based on sagittal otoliths
- von Bertalanffy length-at-age growth curves
- Longevity estimates (A_{max})

ANNUAL GROWTH ZONES

BOMB RADIOCARBON

REPRODUCTION

- Based on gonad histology
- Length at 50% maturity (L_{50})
- Age at 50% maturity (A_{50})
- Length/age at 50% sex reversal $(L_X \text{ and } A_X)$
- Spawning period

USE IN PIFSC STOCK ASSESSMENTS

Von Bertalanffy growth curve:

- Growth is a fundamental measure of stock productivity
- For Growth parameters are needed for and can be applied to all species for:

Productivity/ Susceptibility Analyses

Length-based mortality estimators

Age-structured stock assessments

Longevity (A_{max}) :

Indicator of population turnover and natural mortality rates for stock assessment

USE IN PIFSC STOCK ASSESSMENTS

Maturity Ogives and Median (50%) Length & Age at Maturity (L_{50} & A_{50}):

- Needed to calculate reproductive output
- Considered in formulating size limits and seasonal fishing restrictions

Length-Weight Relationship:

Needed to convert length to weight and vice versa

CORAL REEF FISH & BOTTOMFISH

Bio-Sampling Program: American Samoa, CNMI, Guam

NOAA Vessels & Local Markets: Hawaii

Bio-Sampling in Western Pacific:

- Regional species priority list for biological sampling
- Arrangements with markets to sample fish
- Priority fish brought to bio-sampling facility for otolith & gonad extraction (~20 specimens/length class/month/species)
- NOAA research cruises support bottomfish sample collection

PELAGICS

PIRO Observer Program: samples Hawaii and American Samoa pelagic longline fishery

Bio-Sampling Program: currently no sampling

Biological Sampling Procedures:

- At-sea sampling by trained PIRO contracted observers
- Observers sample according to written protocols
- Record capture data and measure length
- Collect/preserve/label heads (otoliths) and gonads

CORAL REEF FISH – Contracted Study

Parrotfish species - Guam

Calatomus carolinus
Chlorurus frontalis, C. microrhinos,
and C. spilurus
Scarus altipinnis, S. forsteni,
S. psittacus, S. rubroviolaceus, and
S. schlegeli

 L_{50} , L_{X} , & L_{max} and A_{50} & A_{max} determined for 9 species (Taylor & Choat 2014 *J. Fish. Biol.*) $\frac{300}{200}$

CORAL REEF SPECIES –LOBSTERS

Past NWHI fishery for:

Spiny Lobsters *Panulirus marginatus* Slipper Lobster *Scyllarides sqammosus*

Key Life History Findings:

- > Growth varied among islands for both species
- \triangleright Developed morphological proxy for L_{50}
- > Mortality estimates based on tag/recapture data
- **▶** Range of movement limited for both species (<0.5 km)
- > Compensatory response in reproductive parameters

DEEP-SLOPE BOTTOMFISH

Pristipomoides filamentosus (Opakapaka)

Early growth studies indicated A_{max} ~18 yrs

Recent study that included radiochemical techniques reveal A_{max} ~43 yrs

PELAGICS – HI based Longline Fishery

Age & Growth:

- Reach 98 cm EFL by age-1
- Females-faster growth rates
- A_{max} ~ 12 years

Reproductive Maturity:

• Males:

 $L_{50} = 102 \text{ cm EFL}$ at $A_{50} \sim 1 \text{ yr}$

• Females:

$$L_{50} = 144 \text{ cm EFL}$$

at $A_{50} \sim 4-5 \text{ yrs}$

Eye-to-fork length (cm)

Swordfish, Xiphias gladius

TIMELINE OF LIFE HISTORY STUDIES

Sampling: 1-2 yr

Otolith prep: 0.5-1 yr

Lab Analysis: 0.5-1.5 yr

Gonad prep: 0.5-1 yr

Data Analysis & Results:

~0.5 yr

TROPICAL FISH LIFE HISTORY Challenges

- 1. Vast majority of insular species are data-poor
- 2. Limited access; low landings; cultural preferences; high market value
- 3. Many species suspected to be long-lived $(A_{max} > 30 \text{ yrs})$
- 4. Four species groups are "sex-switchers"
- 5. Regional variation in life history parameters likely
- 6. Remote sampling locations
- 7. Limited regional capacity to conduct life history studies; small PIFSC Life History Program
- > "Production Level Ageing" on even 1 species is not feasible

LIFE HISTORY PROXIES: Provide More Timely Estimates for Bio-Sampled Coral Reef Fishes

OBJECTIVE: Develop a new way to expedite estimates of fem L_{50} & A_{50} with acceptable accuracy & precision

- 1. Using Bio-Sampling database, plot monthly female GSIs vs. FL
- 2. Identify peak GSI month & ≥½ peak months as spawning season
- 3. Select ovary samples over size range of spawning season
- 4. Prepare & score individual maturity using histological slides
- 5. Fit logistic to % mature per length class to estimate L_{50}
- 6. Select otoliths; have contractor prepare & age cross-sections
- 7. Estimate A_{50} from age estimates in step 6
- 8. Iteratively solve for GSI L_{50} that corresponds to histology L_{50}

CURRENT STATUS OF LIFE HISTORY PROXY STUDIES

AMERICAN SAMOA

Bigscale soldierfish *Myripristis berndti*: prelim L_{50} fit for n \approx 110

Blueline squirrelfish *Sargocentron tiere*: prelim L_{50} fit for n \approx 115

CNMI

Pacific yellowtail emperor *Lethrinus atkinsoni*: L_{50} fit (n=556)

Bluespine unicornfish *Naso unicornis*: histology done but slides unread (n≈350-370 available); size-at-age estimated for n=25

GUAM

Bigeye emperor *Monotaxis grandoculis*: prelim L_{50} fit for n \approx 90

Lyretail grouper *Variola louti*: prelim L_{50} fit for n \approx 90

TRADEOFFS OF LIFE HISTORY "PROXIES"

POSITIVES:

- Cost effective; acceptable approach given limited staff
- Information needs of stakeholders & assessment scientists provided on a more timely basis for more spp.

NEGATIVES:

- Limited to females
- Full success contingent on ability to empirically develop predictive relation between GSI-based L_{50} & histology-based L_{50}
- Errors introduced during field sampling can cause delays, lessen accuracy and precision (fewer usable specimens)

LIFE HISTORY – NEXT 5 YEARS

Primarily coral reef and bottomfish species in the western & central Pacific

POTENTIAL FUTURE APPLICATIONS Other Marine Fishes

Blue marlin (1245 lbs.)
Oahu 2009

Opah, Lampris spp.

LH PUBLICATIONS (2000-present)

Pelagics:

DeMartini et al. (2007). Fish Bull 105:356-367

DeMartini et al. (2000). Fish Bull 98:489-500

Lobster:

DeMartini. (2006). Atoll Res Bull 543:203-215

DeMartini et al. (2005). Fish Bull 103:23-33

DeMartini et al. (2003). Fish Bull 101:22-31

DeMartini et al. (2002). NOAA-TM-NMFS-SWFSC-344

DeMartini & Williams. (2001). J Crust Biol 21:891-896

O'Malley & Walsh. (2012). Bull Mar Sci 89:529-549

O'Malley. (2011). Mar Biol 158:1887-1901O'Malley. (2009). Mar Coast Fisheries 1:325-342

LH PUBLICATIONS (2000-present)

Bottomfish:

Andrews et al. (2012). Can J Fish Aquat Sci 69:1850-1869 Andrews et al. (2011). PIFSC Admin Rep H-11-07 DeMartini et al. (2011). Fish Bull 109:123-134 Nichols & DeMartini. (2008). PIFSC Admin Rep H-08-06

Reef fish:

Andrews et al. (submitted March 2014). Mar FW Res Andrews et al. (2013). Mar F W Res 70(8):1131-1140 Andrews et al. (2011). Mar F W Res 62(11):1259-1269 DeMartini et al. (2014). Ichthyol Res DOI 10.1007/s10228-014-0393-z

